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Abstract
We present a communication protocol for chains of permanently coupled qubits
which achieves perfect quantum state transfer and which is efficient with respect
to the number of chains employed in the scheme. The system consists of M
uncoupled identical quantum chains. Local control (gates, measurements) is
only allowed at the sending/receiving end of the chains. Under a quite general
hypothesis on the interaction Hamiltonian of the qubits, a theorem is proved
which shows that the receiver is able to asymptotically recover the messages
by repetitive monitoring of his qubits.

PACS numbers: 03.67.Hk, 05.50.+q, 03.67.−a, 03.65.Db

1. Introduction

Permanently coupled quantum chains have recently been proposed as prototypes of reliable
quantum communication lines [1, 2]. The main drawback of these schemes is related with
the fact that even in the absence of external noise the fidelity of the transmission is in general
not optimal [1, 3–7]. This is due to the dispersion which affects the propagation of local
excitations [8]. One way to overcome this is to engineer specific coupling Hamiltonians
[7, 9–12]. However, the more a scheme relies on particular properties of the Hamiltonian, the
more it will be affected by imperfections in its implementation [6]. A more general approach
was taken in [13] where a specific encoding using time-dependent couplings at the sending
and receiving ends of the chain achieved high fidelity transfer. Perfect transfer (i.e. unitary
fidelity) for a whole class of unmodulated quantum chains was finally achieved in [14] by
employing a parallel channel encoding where the sender of the message is able to transmit one
qubit of information by operating on the first spins of two non-interacting copies of the chain.
In quantum information theory, the ratio R between the number qubits that can be transferred
with unitary fidelity and the number of channel copies used in the protocol is an important
efficiency parameter [3, 15]. Therefore, one question that naturally arises is whether or not
there is any special meaning in the 1/2 value of R achieved in the protocol of [14]. More
specifically, we pose the following question: can we use almost any quantum chain for perfect
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and efficient (i.e. R = 1) quantum communication? In this paper, we give a sufficient and
easily attainable condition for achieving this goal.

The paper is organized as follows: the model and the notation are introduced in section 2.
The efficiency and the fidelity of the protocol are discussed in sections 3 and 4, respectively.
Finally in section 5 we prove a theorem which provides us with a sufficient condition for
achieving efficient and perfect state transfer in quantum chains.

2. The model

Consider a linear chain of N spins interacting through the Hamiltonian H. For n = 1, . . . , N ,
we define the single excitation vector

|n〉 ≡ |00 · · · 010 · · · 0〉, (1)

as the state of the chain in which the nth spin is in the computational base vector |1〉 and
the remaining N − 1 qubits are in the state |0〉. Analogously, we define |0〉 ≡ |00 · · · 0〉 to
be the state where all spins are in |0〉. We assume that |0〉 is an eigenvector of H and that
the N-dimensional subspace generated by the states |n〉 is invariant under the time evolution
u(t) ≡ e−iHt/h̄, i.e.

|n〉 −→ u(t)|n〉 =
N∑

n′=1

fn′,n(t)|n′〉, (2)

where fn′,n(t) ≡ 〈n′|e−iHt/h̄|n〉 is the probability amplitude that the excitation |n〉 moves to
|n′〉 in the time interval t. A sufficient criterion for equation (2) is that H commutes with the
z component of the total spin. A typical example is provided by a linear array of spins with
Heisenberg interaction. In the original proposal of [1], one assumes that initially the chain is
in |0〉 and that at time t = 0 a first party (Alice) encodes one qubit of logical information in the
first spin by preparing the chain in |�〉 ≡ α|0〉 + β|1〉 with α and β complex. By reading out
the state of the Nth qubit at time t, a second party (Bob) will be able to recover the information
transmitted.

Assume now that the two communicating parties operate on M independent (i.e. non-
interacting) copies of the chain3. The idea is to use these copies to improve the overall
fidelity of the communication. As in the original scheme [1], we assume Alice and Bob to
control, respectively, the first and the last qubit of each chain (see figure 1). By preparing any
superposition of her spins, Alice can in principle transfer up to M logical qubits. However,
in order to improve the communication fidelity, the two parties will find it more convenient
to redundantly encode only a small number (say Q(M) � M) of logical qubits in the M
spins. By adopting these strategies, Alice and Bob are effectively sacrificing the efficiency
R(M) = Q(M)/M of their communication line in order to increase its fidelity. This is typical
of any communication scheme and it is analogous to what happens in quantum error correction
theory, where a single logical qubit is stored in many physical qubits. By focusing on those
strategies that guarantee a (possibly asymptotic in M) unitary fidelity in the transmission of
the Q(M) encoded qubits, the efficiency R(M) yields the capacity of the channel [15]. In
the case of the quantum chains (2), it has been proved [14] the existence of an encoding of
efficiency R = 1/2 which allows for unitary fidelity, by showing that for M = 2 it is possible
to achieve perfect state transfer of a single logical qubit by using just two copies of the original

3 This is quite a common attitude in quantum information theory [15] where successive uses of a memory-less channel
are formally described by introducing many parallel copies of the channel (see [3] for a discussion on the possibility
of applying this formal description to quantum chain models). Moreover, for the case at hand, the assumption of
Alice and Bob dealing with ‘real’ parallel chain seems reasonable also from a practical point of view [16].
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Figure 1. Schematic of the system: Alice and Bob operate M chains, each containing N spins.
The spins belonging to the same chain interact through the Hamiltonian H which accounts for the
transmission of the signal in the system. Spins of different chains do not interact. Alice encodes
the information in the first spins of the chains by applying unitary transformations to her qubits.
Bob recovers the message in the last spins of the chains by performing joint measurements.

chain. Here we will generalize such result by proving that given M > 2 there exist an optimal
encoding–decoding strategy which asymptotically allows us to achieve perfect state transfer
of Q(M) qubits such that

lim
M→∞

R(M) = 1. (3)

In other words, we show the possibility of achieving both perfect transfer and optimal
efficiency.

Our strategy requires Alice to prepare superpositions of the M chains where ∼M/2 of
them have a single excitation in the first location while the remaining are in |0〉. Since in the
limit M � 1 the number of qubit transmitted is log

(
M

M/2

) ≈ M , this architecture guarantees
optimal efficiency (3). On the other hand, our protocol requires Bob to perform collective
measurements on his spins to determine if all the ∼M/2 excitations Alice is transmitting
arrived at his location. We will prove that by repeating these detections many times, Bob is
able to recover the messages with asymptotically perfect fidelity.

2.1. Notation

Before beginning the analysis, let us introduce some notation. In order to distinguish the M
different chains we introduce the label m = 1, . . . ,M: in this formalism |n〉m represents
the state (1) of mth chain with a single excitation in the nth spin. In the following, we will
be interested in those configurations of the whole system where K chains posses a single
excitation while the remaining M − K are in |0〉, as in the case

|1〉1 ⊗ |1〉2 · · · ⊗ |1〉K ⊗ |0〉K+1 · · · ⊗ |0〉M, (4)

where, for instance, the first K chains have an excitation in the first chain location. Another
more general example is given in figure 2. The complete characterization of these vectors
is obtained by specifying (i) which chains possess a single excitation and (ii) where these
excitations are located horizontally along the chains. In answering to the point (i) we introduce
the K-element subsets S�, composed by the labels of those chains that contain an excitation.
Each of these subsets S� corresponds to a subspace of the Hilbert spaceH(S�) with a dimension
NK. The total number of such subsets is equal to the binomial coefficient

(
M

K

)
, which counts

the number of possibilities in which K objects (excitations) can be distributed amongst M
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Figure 2. Example of our notation for M = 5 chains of length N = 6 with K = 2 excitations.
The state above, given by |o〉1 ⊗ |3〉2 ⊗ |o〉3 ⊗ |〉4 ⊗ |o〉5, has excitations in the chains m1 = 2
and m2 = 4 at the horizontal position n1 = 3 and n2 = 1. It is in the Hilbert space H(S6)

corresponding to the subset S6 = {2, 4} (assuming that the sets S� are ordered in a canonical way,
i.e. S1 = {1, 2}, S2 = {1, 3} and so on) and will be written as |(3, 1); 6〉〉. There are (

5
2 ) = 10

different sets S� and the number of qubits one can transfer using these states is log2 10 ≈ 3. The
efficiency is thus given by R ≈ 3/5, which is already bigger than in the original scheme [14].

parties (parallel chains). In particular, for any � = 1, . . . ,
(

M

K

)
, the �th subset S� will be

specified by assigning its K elements, i.e. S� ≡ {
m

(�)
1 , . . . , m

(�)
K

}
with m

(�)
j ∈ {1, . . . ,M} and

m
(�)
j < m

(�)
j+1 for all j = 1, . . . , K . To characterize the location of the excitations, point (ii), we

will introduce instead the K-dimensional vectors �n ≡ (n1, . . . , nK) where nj ∈ {1, . . . , N}.
We can then define

|�n; �〉〉 ≡
K⊗

j=1

|nj〉m(�)
j

⊗
m′∈S�

|0〉m′ , (5)

where S� is the complementary of S� to the whole set of chains. The state (5) represents
a configuration where the j th chain of the subset S� is in |nj〉 while the chains that do not
belong to S� are in |0〉 (see figure 2 for an explicit example). The kets | �n; �〉〉 are a natural
generalization of the states |n〉1 ⊗ |0〉2 and |0〉1 ⊗ |n〉2 which were used for the ‘dual-rail
encoding’ in [14]. They are useful for our purposes because they are mutually orthogonal, i.e.

〈〈 �n; �|�n′; �′〉〉 = δ��′δ�n�n′ , (6)

and their time evolution under the Hamiltonian does not depend on � (cf equation (12)).
Among the vectors (5), those where all the K excitations are located at the beginning of the S�

chains play an important role in our analysis. Here �n = �1 ≡ (1, . . . , 1) and we can write

|�1; �〉〉 ≡
⊗
m∈S�

|1〉m
⊗
m′∈S�

|0〉m′ . (7)

According to equation (6), for � = 1, . . . ,
(

M

K

)
these states form orthonormal set of

(
M

K

)
elements. Analogously, by choosing �n = �N ≡ (N, . . . , N), we obtain the orthonormal set of(

M

K

)
vectors

| �N ; �〉〉 ≡
⊗
m∈S�

|N 〉m
⊗
m′∈S�

|0〉m′ , (8)

where all the K excitations are located at the end of the chains.
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3. Efficient encoding

If all the M chains of the system are originally in |0〉, the vectors (7) can be prepared by Alice
by locally operating on her spins. Moreover, since these vectors span a

(
M

K

)
-dimensional

subspace, Alice can encode in the chain Q(M,K) = log2

(
M

K

)
qubits of logical information

by preparing the superpositions,

|�〉〉 =
∑

�

A�|�1; �〉〉, (9)

with A� complex coefficients. The efficiency of such encoding is hence R(M,K) = log2

(
M

K

)
M

which maximized with respect to K gives

R(M) = 1

M

{
log2

(
M

M/2

)
, for M even,

log2

(
M

(M−1)/2

)
, for M odd.

(10)

The Stirling approximation can then be used to prove that this encoding is asymptotically
efficient (3) in the limit of large M, e.g.

log2

(
M

M/2

)
≈ log2

MM

(M/2)M
= M. (11)

Note that already for M = 5 the encoding is more efficient (cf figure 2) than in the ‘dual-rail
encoding’ given in [14]. In the remainder of the paper, we show that the encoding (9) provides
perfect state transfer by allowing Bob to perform joint measurements at his end of the chains.

4. Perfect transfer

Since the M chains do not interact with each other and possess the same free Hamiltonian
H (this assumption can be relaxed, see [17]); the unitary evolution of the whole system is
described by U(t) ≡ ⊗mum(t), with um(t) being the operator (2) acting on the mth chain. The
time evolved of the input |�1; �〉〉 of equation (7) is thus equal to

U(t)|�1; �〉〉 =
∑

�n
F [�n, �1; t]| �n; �〉〉, (12)

where the sum is performed for all nj = 1, . . . , N and

F [�n, �n′; t] ≡ fn1,n
′
1
(t) · · · fnK,n′

K
(t) (13)

is a quantity which does not depend on �. In equation (12) the term �n = �N corresponds to
having all the K excitations in the last locations of the chains. We can thus write

U(t)|�1; �〉〉 = γ1(t)| �N ; �〉〉 +
√

1 − |γ1(t)|2|ξ(t); �〉〉, (14)

where

γ1(t) ≡ 〈〈 �N ; �|U(t)|�1; �〉〉 = F [ �N, �1; t] (15)

is the probability amplitude that all the K excitation of |�1; �〉〉 arrive at the end of the chains,
and

|ξ(t); �〉〉 ≡
∑
�n = �N

F1[�n, �1; t]| �n; �〉〉, (16)

with

F1[�n, �1; t] ≡ F [�n, �1; t]√
1 − |γ1(t)|2

, (17)
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is a superposition of terms where the number of excitations arrived to the end of the
communication line is strictly less then K. It is worth noting that equation (6) yields the
following relations:

〈〈 �N ; �|ξ(t); �′〉〉 = 0, 〈〈ξ(t); �|ξ(t); �′〉〉 = δ��′ , (18)

which shows that {||ξ(t); �〉〉} is an orthonormal set of vectors which spans a subspace
orthogonal to the states | �N ; �〉〉. The time evolution of the input state (9) follows by linearity
from equation (14), i.e.

|�(t)〉〉 = γ1(t)|�〉〉 +
√

1 − |γ1(t)|2|�(t)〉〉, (19)

with

|�(t)〉〉 ≡
∑

�

A�|ξ(t); �〉〉, |�〉〉 ≡
∑

�

A�| �N ; �〉〉. (20)

The vectors |�〉〉 and |�(t)〉〉 are unitary transformations of the input message (9) where
the orthonormal set {|�1; �〉〉} has been rotated into {| �N ; �〉〉} and {|ξ(t); �〉〉}, respectively.
Moreover, |�〉〉 is the configuration we need to have for perfect state transfer at the end of
the chain. In fact, it is obtained from the input message (9) by replacing the components |1〉
(excitation in the first spin) with |N 〉 (excitation in the last spin). From equation (18) we know
that |�〉〉 and |�(t)〉〉 are orthogonal. This property helps Bob to recover the message |�〉〉 from
|�(t)〉〉: he needs only to perform a collective measurement on the M spins he is controlling to
establish if there are K or less excitations in those locations. The above is clearly a projective
measure that can be performed without destroying the quantum coherence associated with the
coefficients A�. Formally, this can described by introducing the observable

� ≡ 11 −
∑

�

| �N ; �〉〉〈〈 �N ; �|. (21)

A single measure of � on |�(t1)〉〉 yields the outcome 0 with probability p1 ≡ |γ1(t1)|2, and
the outcome +1 with probability 1 − p1. In the first case, the system will be projected in |�〉〉
and Bob will get the message. In the second case, instead the state of the system will become
|�(t1)〉〉. Already at this stage the two communicating parties have a success probability equal
to p1. Moreover, as in [14], the channels have been transformed into a quantum erasure
channel [18] where the receiver knows if the transfer was successful.

Consider now what happens if Bob fails to get the right answer from the measure. The
state on which the chains is projected is explicitly given by

|�(t1)〉〉 =
∑
�n= �N

F1[�n, �1; t1]
∑

�

A�| �n; �〉〉. (22)

Let us now consider the evolution of this state for another time interval t2. By repeating the
same analysis given above, we obtain an expression similar to (19), i.e.

|�(t2, t1)〉〉 = γ2|�〉〉 +
√

1 − |γ2|2|�(t2, t1)〉〉, (23)

where now the probability amplitude of getting all excitations in the Nth locations is described
by

γ2 ≡
∑
�n= �N

F [ �N, �n; t2]F1[�n, �1; t1].

In this case, |�(t)〉〉 is replaced by

|�(t2, t1)〉〉 =
∑

�

A�|ξ(t2, t1); �〉〉, (24)
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with

|ξ(t2, t1); �〉〉 =
∑
�n= �N

F2[�n, �1; t2, t1]| �n; �〉〉,

and F2 defined as in equation (26) (see below). In other words, the state |�(t2, t1)〉〉 can be
obtained from equation (19) by replacing γ1 and F1 with γ2 and F2. Bob can hence try to use
the same strategy he used at time t1: i.e. he will check whether or not his M qubits contain K
excitations. With (conditional) probability p2 ≡ |γ2|2, he will get a positive answer and his
quantum register will be projected in the state |�〉〉 of equation (20). Otherwise, he will let
the system evolve for another time interval t3 and repeat the protocol. Reiterating the above
analysis, it is possible to give a recursive expression for the conditional probability of success
pq ≡ |γq |2 after q − 1 successive unsuccessful steps. The quantity γq is the analogous of γ2

and γ1 of equations (15) and (23). It is given by

γq ≡
∑
�n = �N

F [ �N, �n; tq]Fq−1[�n, �1, tq−1, . . . , t1], (25)

where

Fq−1[�n, �1; tq−1, . . . , t1]

≡
∑
�n′ = �N

F [ �N, �n′; tq−1]√
1 − |γq−1|2

Fq−2[�n′, �1; tq−2, . . . , t1] (26)

and F1[�n, �1, t] is given by equation (17). In these equations tq , . . . , t1 are the time intervals
that occurred between the various protocol steps. Analogously, the conditional probability of
failure at the step q is equal to 1 − pq . The probability of having j − 1 failures and a success
at the j th step can thus be expressed as

π(j) = pj (1 − pj−1)(1 − pj−2) · · · (1 − p1), (27)

while the total probability of success after q steps is obtained by the sum of π(j) for all
j = 1, . . . , q, i.e.

Pq =
q∑

j=1

π(j). (28)

Since pj � 0, equation (28) is a monotonic function of q. As a matter of fact, in the next section
we prove that under a very general hypothesis on the system Hamiltonian, the probability of
success Pq converges to 1 in the limit of q → ∞. This means that by repeating many times
the collective measure described by �, Bob is guaranteed to get, sooner or later, the answer
0 and hence the message Alice sent to him. In other words, our protocol allows perfect state
transfer in the limit of repetitive collective measures. Note that the above analysis applies for
all classes of subsets S�. The only difference between different choices of K is in the velocity
of the convergence of Pq → 1. In any case, by choosing K ∼ M/2, Alice and Bob can
achieve perfect fidelity and optimal efficiency.

5. Convergence theorem

Here we show that if there exists no eigenvector |em〉 of the quantum chain Hamiltonian H
which is orthogonal to |N 〉, then there is a choice of the time intervals tq , tq−1, . . . , t1 such
that Pq of equation (28) converges to 1 in the limit of q → ∞. For the special case M = 2
and K = 1, this was numerically shown in [14].
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The state of the system at a time interval of tq after the (q − 1)th failure can be expressed
in compact form as follows:

|�(tq, . . . , t1)〉〉 = U(tq)�U(tq−1)� · · · U(t1)�|�〉〉√
(1 − pq−1) · · · (1 − p1)

,

with U(t) the unitary time evolution generated by the system Hamiltonian and � the projection
defined in equation (21). One can verify, for instance, that for q = 2, the above equation
coincides with equation (23). (For q = 1, this is just (19) evaluated at time t1.) By definition,
the conditional probability of success at the qth step is equal to

pq ≡ |〈〈�|�(tq, . . . , t1)〉〉|2.
Therefore, equation (27) yields

π(q) = |〈〈�|U(tq)�U(tq−1)� · · · U(t1)�|�〉〉|2
= |〈〈 �N ; �|U(tq)�U(tq−1)� · · · U(t1)�|�1; �〉〉|2, (29)

where the second identity stems from the fact that, according to equations (2) and (6), U(t)�

preserves the orthogonality relation among states | �n; �〉〉 with distinct values of �. Analogously
to the cases of equations (13) and (15), the second identity of (29) establishes that π(q) can
be computed by considering the transfer of the input |�1; �〉〉 for arbitrary �. The expression
(29) can be further simplified by noting that for a given � the chains of the subset S� contribute
with a unitary factor to π(q) and can be thus neglected (according to (7) they are prepared in
|0〉 and do not evolve under U(t)�). Identify |�1〉〉� and | �N 〉〉� with the components of |�1; �〉〉
and | �N ; �〉〉 relative to the chains belonging to the subset S�. In this notation, we can rewrite
equation (29) as

π(q) = |�〈〈 �N |U�(tq)�� · · · U�(t1)��|�1〉〉�|2, (30)

where �� = 11� −| �N 〉〉�〈〈 �N | and U�(t) is the unitary operator ⊗m∈S�
um(t) which describes the

time evolution of the chains of S�. Furthermore, since all the K chains of S� contain exactly
one excitation and U� preserves the total number of excitations, we only need to consider the
N2K -dimensional restrictions of this operator in the corresponding subspace H(S�).

To prove that there exists a suitable choice of tj such that the series (28) converges to 1, it
is sufficient to consider the case tj = τ > 0 for all j = 1, . . . , q: this is equivalent to selecting
decoding protocols with constant measuring intervals.

By introducing the operator T� ≡ U�(τ)��, equation (30) thus becomes

π(q) = |�〈〈 �N |(T�)
q |�1〉〉�|2

= �〈〈�1|(T †
�

)q | �N 〉〉�〈〈 �N |(T�)
q |�1〉〉� = w(q) − w(q + 1), (31)

where

w(j) ≡ �〈〈�1|(T †
�

)j
(T�)

j |�1〉〉� = ‖(T�)
j |�1〉〉�‖2 (32)

is the norm of the vector (T�)
j |�1〉〉�. Substituting equation (31) in equation (28) yields

Pq =
q∑

j=1

[w(j) − w(j + 1)] = 1 − w(q + 1), (33)

where the property w(1) = �〈〈�1|��|�1〉〉� = 1 was employed. Proving the thesis is hence
equivalent to prove that for q → ∞ the succession w(q) nullifies. This last relation can be
studied using properties of power-bounded matrices [19]. In fact, by introducing the norm of
the operator (T�)

q , we have

w(q) = ‖(T�)
q |�1〉〉�‖2 � ‖(T�)

q‖2 � c

(
1 + ρ(T�)

2

)2q

, (34)
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where c is a positive constant which does not depend4 on q and where ρ(T�) is the spectral
radius of T�, i.e. the eigenvalue of T� with maximum absolute value (NB: even when T� is
not diagonalizable this is a well-defined quantity). Equation (34) shows that ρ(T�) < 1 is a
sufficient condition for w(q) → 0. In our case we note that, given any normalized eigenvector
|λ〉〉� of T� with eigenvalue λ, we have

|λ| = ‖T�|λ〉〉�‖ = ‖��|λ〉〉�‖ � 1, (35)

where the inequality follows from the fact that �� is a projector. Note that in equation (35)
the identity holds only if |λ〉〉� is also an eigenvector of �� with eigenvalue +1, i.e. only if |λ〉〉�
is orthogonal to | �N 〉〉�. By definition, |λ〉〉� is an eigenvector of T� = U�(τ)��: therefore, the
only possibility to have the equality in equation (35) is that (i) |λ〉〉� is an eigenvector of U�(τ)

(i.e. an eigenvector of the Hamiltonian H tot
� of the chain subset S�) and (ii) it is orthogonal to

| �N 〉〉�. By negating the above statement, we get a sufficient condition for the thesis. Namely,
if all the eigenvectors | �E〉〉� of H tot

� are not orthogonal to | �N 〉〉�, then the absolute values of the
eigenvalues λ of T� are strictly smaller than 1 which implies ρ(T�) < 1 and hence the thesis.
Since the S� channels are identical and do not interact, the eigenvectors | �E〉〉� ≡ ⊗

m∈S�
|em〉m

are tensor product of eigenvectors |em〉 of the single-chain Hamiltonians H. Using the notation
introduced in equation (1), the sufficient condition becomes

�〈〈 �E| �N 〉〉� =
∏
m∈S�

m〈N |em〉m = 0, (36)

which can be satisfied only if 〈N |em〉 = 0 for all eigenvectors |em〉 of the single-chain
Hamiltonian H in the single excitation sector.

While we have proved here that for equal time intervals the probability of success is
converging to unity, in practice one may use optimal measuring time intervals for a faster
transfer [14]. We also point out that timing errors may delay the transfer, but will not decrease
the asymptotic fidelity.

5.1. Quantum chains with nearest-neighbour interactions

It is worth noting that equation (36) is a very weak condition, which is satisfied for any open
nearest-neighbour quantum chain as long as the transition amplitude f1,N (t) from Alice to
Bob (cf equation (2)) is not identical to zero. Let us prove this by contradiction: assume there
exists a normalized eigenvector |em〉 of the single-chain Hamiltonian H such that

〈N |em〉 = 0. (37)

Because |em〉 is an eigenstate, we can conclude that also

〈em|H |N 〉 = 0. (38)

If we act with the Hamiltonian on the ket in equation (38), we may get some term proportional to
〈em|N 〉 (corresponding to an Ising-like interaction) and some part proportional to 〈em|N − 1〉
(corresponding to a hopping term; if this term did not exist, then clearly f1,N (t) = 0 for all
times). We can thus conclude that

〈em|N − 1〉 = 0. (39)

Note that for a closed chain, e.g. a ring, this need not be the case, because then also a
term proportional to 〈em|N + 1〉 = 〈em|1〉 would occur. If we insert the Hamiltonian into

4 If S is the similarity transformation that puts T� into the Jordan canonical form, i.e. J = S−1T�S, then c is given
explicitly by c = ‖S‖ ‖S−1‖.
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equation (39) again, we can use the same reasoning to see that

〈em|N − 2〉 = · · · = 〈em|1〉 = 0 (40)

and hence |em〉 = 0, which is a contradiction to |em〉 being normalized. We thus conclude
that any nearest-neighbour Hamiltonian that can transfer quantum information with nonzero
fidelity (including the Heisenberg chains analysed in [1, 3]) is capable of efficient and perfect
transfer when used in the context of parallel chains.
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